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Abstract

This paper describes an extension of the adaptive two-zone method whose accuracy is substantially enhanced when compared to the
original formulation by Matthews and Wood. A diffusive problem under the presence of an irradiation-induced resolution flux is eval-
uated by applying a variational principle to the diffusion equation. Prior to a gas saturation in the grain boundaries, a constraint asso-
ciated with a gas balance is added to the variational equation. The spherical grain is divided into two regions whose interface is relocated
as the ratio of the number of gas atoms within a grain to that generated. The distribution of the gas concentration is calculated over the
grain. During the calculations, the number of degrees of freedoms is reduced to provide a profile which decreases monotonically along
the radius. Numerical verifications show that the present approach is viable in computing a gas release accurately and efficiently in fuel
performance codes.
� 2007 Elsevier B.V. All rights reserved.

PACS: 28.41.Ak; 66.30.�h
1. Introduction

Fission gas release in a nuclear fuel is modeled by
describing a gas transport from a pellet to a free volume.
During these complex processes, gas behavior on the grain
boundaries plays a key role in determining the diffusive flux
from the interior of the pellet [1]. Grain boundary is ther-
modynamically regarded to behave as a perfect sink to
which all the atoms arriving at it are absorbed.

Applying the assumption of a perfect sink to the diffu-
sion problem does not lead to a satisfactory explanation
for an incubation observed during a fission gas release.
After Speight’s argument [2], an irradiation-induced resolu-
tion flux has been widely introduced to account for the
delay of a gas release. The resolution flux is proportional
to the number of gas atoms in the bubbles on a grain
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boundary. As the gas atoms on a grain boundary reach a
certain critical value, the gas atoms are assumed to vent.

A few solutions exist for the gas atoms accumulated on a
grain boundary before a saturation [2–4]. In addition, a gas
release after a saturation can be evaluated [4,5]. Even with
these semi-analytical solutions, it is necessary to obtain
their responses through several iterations when time-vary-
ing histories are considered. On the other hand there are
several numerical solution methods for which the gas con-
centrations are calculated at nodal points in advance: finite
difference method [6], finite element method (FEM) [7,8],
and finite volume method [9]. These numerical attempts
are more attractive in the sense that they are rather easily
extended to versatile situations such as the modification
of a boundary condition, time-varying problems, etc.
Meanwhile some loss of their accuracy has to be accepted
if the number of nodes is not enough and their distribution
is not appropriate so that a steep gradient near a grain
boundary is not described well and the resolution flux is
not computed accurately.
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Recently the authors proposed an adaptive two-zone
method [10] for which the coordinate of a nodal point
changes as a function of the released fraction. This method
not only overcomes an inaccuracy at a lower release range,
but also it has an efficiency comparable to the Fosberg–
Maissh algorithm [11].

In this paper, the adaptive two-zone method is further
developed to deal with a fission gas release under an
imperfect sink. A system of equations are derived by apply-
ing a variational principle to the diffusion equation under a
non-homogeneous boundary condition. The gas accumu-
lated at the grain boundaries and its release to the free
volume are computed from the profile of the gas con-
centration. It is also of importance to compare these results
with those from previous analytic solutions and the
FEM.

2. Fission gas release under irradiation-induced resolution

condition

The diffusion equation in spherical coordinates,

ocg

ot
¼ 1

r2

o

or
Dr2 ocg

or

� �
þ b; ð1Þ

is solved with the boundary conditions, cg = ck at r = a and
ocg/or = 0 at r = 0, where a is the grain radius, D the effec-
tive diffusion coefficient of a gas atom, and b the gas atom
generation rate. The values ck and b are defined depending
on how the irradiation-induced resolution flux near a grain
boundary is taken into account.

Following Speight’s argument [2], although there is con-
troversial discussion on its validity [12], the diffusive flux
within the matrix to the boundary is assumed to be bal-
anced by the resolution flux from the boundary, i.e.

Dck

k
¼ bN

2
; ð2Þ

where b is the rate of a resolution of the intergranular
atoms, N the gas atoms per unit area of a grain face, k
the thickness of a resolution layer, and ck the average gas
concentration in the resolution layer.

When the perfect sink boundary condition is preserved,
all the atoms due to a resolution provide an additional flux
at a depth of k, or an additional source term which is dis-
tributed uniformly throughout a layer [6]. In combination
with the perfect sink boundary condition, the solutions
are obtained by adding the resolution flux to the source
term. On the other hand, the diffusion equation under the
resolution flux is also solved by adopting an imperfect
boundary condition [4,5,9]. Rearranging Eq. (2) yields
the boundary condition

ck ¼
kbN
2D

: ð3Þ

As the gas is accumulated on a grain face via a resolution,
N is saturated at a value of Nsat. The saturation concentra-
tion is fixed for all the temperatures [13].
During the computations, N is evaluated from a balance
among the gas atoms generated, those remaining within a
grain, those in a grain boundary, and those released:Z

bdt ¼ �cg þ 3N=2aþ R; ð4Þ

where �cg is the average gas concentration in the grain, and
R is the number of gas atoms released per unit volume of a
fuel.

After a saturation, all the gas arriving at a grain bound-
ary is released. Gas released fraction to the free volume is
determined by

f ¼ 1� �cg þ 3N sat=2aR
bdt

: ð5Þ
2.1. Steady-state condition

Speight [2] suggested an approximate method for the
rate of an accumulation of gas atoms at a grain face. It is
given by

dN
dt
¼ 4b

Dt
p

� �1=2

1� Nbk
2Dbt

� �
: ð6Þ

The solution [6] for Eq. (6) is written in the form of

N ¼ A0ðu2 � 2uþ 2� 2 expð�uÞÞ; ð7Þ
where A 0 = bpD2/8(bk)3 and u = 4bk(t/Dp)1/2.

Gas release after the saturation of a grain boundary was
obtained by Turnbull [5], based on the assumption of a uni-
form gas concentration within a grain. It was evaluated
that the fractional release shows an overestimation after
an incubation when a variation of the gas concentration
across the grain is pronounced under certain conditions
such as a high temperature, and a low resolution rate [6].
Thus the following numerical methods are desirable to seek
a reference solution.

2.2. Time-varying condition

Nuclear fuels are normally irradiated under varying
power conditions. Even when a pin power remains con-
stant, the fuel temperature varies with time due to a change
in the gap conductance, a reduction of the thermal conduc-
tivity of a pellet, etc. Therefore a suitable algorithm is
required to obtain a gas accumulation on a grain boundary
and a fission gas release after a saturation under varying
temperature conditions.

A few iterations are inevitable to develop a transient
solution for all the algorithms which have been developed
up to now. Based on the Booth [14] solutions, a composite
release equation proposed by Turnbull [15] provides the
fractional release by solving an effective time iteratively.
Also an integro-differential equation for the gas accumu-
lated on a grain face and the gas release were rigorously
derived by Forsberg and Massih [4]. However, it still needs
to be treated numerically for time-varying conditions.
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As for purely numerical methods [6,7,9], the gas concen-
trations at nodal points are calculated in advance. The gas
accumulation on a grain boundary and the fractional
release are obtained by integrating the profile of a gas con-
centration. As stated above, the diffusion equation can be
numerically solved by incorporating the resolution flux
together with a perfect sink boundary condition or under
a non-homogeneous boundary condition to account for a
resolution. Regardless of the approaches, the numerical
treatment to obtain gas concentrations at nodal points
leads to a set of simultaneous equations:

Kcg ¼ b; ð8Þ

where K represents the global stiffness matrix, cg the con-
centration vector, and b the load vector. As N depends
on cg before a grain-face saturation, a few iterations are re-
quired until the mass balance of Eq. (4) is satisfied.
2.3. Reference solution from the finite element method

We employed the FEM to prepare the reference solu-
tions for N and f where �cg is required as given by Eqs.
(4) and (5), respectively. The diffusion equation with a
non-homogeneous boundary condition is solved by modi-
fying a system of equations, resulting from eliminating ck

from the independent variables.
At every moment, �cg is evaluated with the gas concentra-

tions at the nodal points as follows:

�cg ¼
Xn

i¼1

kici; ð9Þ

where n is the number of nodal points, ci is the element of
cg, and ki is the coefficient for ci. cn corresponds to ck. The
expression for ki is not only determined by the coordinate
of the nodal points, but also is dependent on which numer-
ical method is chosen to obtain cg.

By inserting Eq. (9) and (4) into Eq. (3), and eliminating
N, ck is represented by

ck ¼
K G� R�

Pn�1
i¼1 kici

� �
1þ Kkn

; ð10Þ

where K = kba/3D and G ¼
R

bdt.
Thus the gas concentration at the boundary is a function

of the gas concentrations at the remaining nodal points.
The linear dependency of ck on ci exhibited in Eq. (10) is
introduced by applying a multi-point (multi-freedom) con-
straint (MPC) to the problem. There are several methods to
treat an MPC such as a master–slave elimination, a pen-
alty, Lagrange multiplier, etc.

For reference solutions, the number of finite elements
(FE) is 50 to represent a grain. The grain is divided into
two layers whose interface is located at an order of a mag-
nitude of k from the grain surface. The inner and outer lay-
ers have 40 and 10 quadratic elements, respectively. The
ratio of the element length is 1.1 and 1.0 for the two layers.
The number of FE and the distribution of the nodal points
are the same as those utilized in the previous works [6,10].

Imposing an MPC in Eq. (8) is done by the master–slave
elimination method [16], which changes K and b to produce
a modified system of the equations. This procedure causes
the present problem to be linear, at least, if the parameters
including Nsat do not vary with time. After a saturation, the
condition of an MPC is removed and the gas release
commences.

3. Adaptive two-zone method under an imperfect boundary

condition

The adaptive two-zone method [10] follows a similar
approach adopted by Matthews and Wood [17]. The vari-
ational principle is applied to calculate a fission gas release
from a spherical grain which is divided into two regions.
The accuracy of the original two-zone approximation,
however, is substantially improved by implementing two
strategies. Firstly the interface of the two regions is moved
in proportion to the released fraction. Secondly the number
of degree of freedoms (DOF) is reduced to provide a phys-
ically admissible profile of a gas concentration which
decreases monotonically from the center to the surface.
We extended this formulation to the imperfect sink
condition.

3.1. Trial functions

The two regions are designated as region I and II,
respectively. Three nodal points are required; the midpoint
radius of region I (q1 = 0.4), the midpoint radius of region
II (q3 = 0.9), and the interface between the two regions, q2.
The normalized radius, q is defined by r/a. For the perfect
sink boundary condition [10], the interface q2 is updated by
a linear equation as follows:

q2ðtÞ ¼ 1� jd � fuðtÞ; ð11Þ

where jd is a factor controlling the update of q2, and fu is
1� �cg=G. The lower limit of q2 is 0.8. We assumed that the
same relations of q2(t) and fu are applicable for an imper-
fect sink problem. jd is chosen to be 0.5 in our calculations.

The concentrations at q1, q2, and q3 are represented by
c1, c2, and c3, respectively. In the case of the imperfect sink
problem, the gas concentration at the grain face, c0 is
necessary since it varies with time as given by Eq. (3).
The concentration profile in each region is described by
the quadratic trial functions, C1 and C2 which are a func-
tion of q2.

C1 and C2 are derived by applying the boundary condi-
tion, ocg/or = 0 at q = 0, cg = c0 at q = 1, and a continuity
of the gas concentration at q2. The trial functions are as
follows:

For the inner region,

C1ðqÞ ¼
25 q2

2 � q2
� �

25q2
2 � 4

c1 þ
25q2 � 4

25q2
2 � 4

c2; ð12Þ
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and for the outer region,

C2ðqÞ ¼
ðq� 1Þð2q� q2 � 1Þ

ðq2 � 1Þ2
c2 þ

4ðq� 1Þðq2 � qÞ
ðq2 � 1Þ2

c3

þ ðq2 � 2qþ 1Þðq2 � qÞ
ðq2 � 1Þ2

c0: ð13Þ
3.2. Stiffness matrix and load vector

The gas concentration c0
g at a time t becomes cg after an

increment of time dt. After integrating the diffusion equa-
tion for dt by using the backward Euler method, the vari-
ational form is derived by taking the product of the time-
integrated diffusion equation with a trial function and inte-
grating it over the domain.

In a comparison with our previous work [10], we added
a constraint to the variational equation before a gas satu-
ration on a grain face. The constraint is

c0 ¼ K G� R� �cg

� �
; ð14Þ

where �cg ¼ k1c1 þ k2c2 þ k3c3 þ k0c0. The coefficients of �cg

are dependent on q2, and are defined below.
The Lagrange multiplier method adds a constraint to

the original variational equation, yielding

d
Z a

0

4p
Deff

2

dcg

dr

� �2

þ
c2

g

2dt
�

c0
g

dt
þ b

 !
cg

" #
r2dr

þ dkc4pa3 c0 � K G� R� �cg

� �� 	
¼ 0; ð15Þ

where kc is the Lagrange multiplier.
Inserting the trial functions into Eq. (15) and minimiz-

ing the integral with respect to c1, c2, c3, c0, and kc leads
to a set of equations as Eq. (8). Some of the elements of
K and b are a function of q2.

Non-zero elements of the symmetric matrix K are given
by

K11 ¼
50A8

W 2
1

Deff

a2
þ 10A8A9

21W 2
1

1

dt
;

K12 ¼ �
50A8

W 2
1

Deff

a2
þ A1A8

21W 2
1

1

dt
;

K22 ¼
A2

15W 2
1W 2

Deff

a2
þ A3

210W 2
1

1

dt
;

K23 ¼ �
2A4

15W 2

Deff

a2
þ A5W 2

105

1

dt
;

K33 ¼
16A6

15W 2

Deff

a2
þ 8A7W 2

105

1

dt
;

K24 ¼
A10

15W 2

Deff

a2
� A11W 2

420

1

dt
;

K34 ¼ �
2A12

15W 2

Deff

a2
� A13W 2

105

1

dt
;

K44 ¼
A14

15W 2

Deff

a2
þ A15W 2

210

1

dt
;

ð16Þ
where Wis and Ais are defined in Appendix A. In addition,
four non-zero elements are needed due to an introduction
of the Lagrange multiplier,

K51 ¼ Kk1;

K52 ¼ Kk2;

K53 ¼ Kk3;

K54 ¼ ð1þ Kk0Þ:

ð17Þ

By virtue of a small difference of q2 relative to q20, q2 at a
previous time increment [10], b is simply approximated by

bi � b̂i;0 þ b̂i;1ðq20 � q2Þ
� �.

�bi; ð18Þ

where �bi and b̂i;j are the denominator and the coefficient of
the numerator, respectively. b̂i;0 and b̂i;1 are summarized in
Table 1, and the Yis are given in Appendix A. �bis are given
by

�b1 ¼ 21dt W 1W 10=A8;

�b2 ¼ 420dt W 1W 10;

�b3 ¼ 105dt W 10;

�b4 ¼ 420dt W 10:

ð19Þ

The last element of b is of the form

b5 ¼ GK: ð20Þ
Since c0 is constrained with the rest of the elements of cg

through Eq. (14), c1, c2, and c3 are independent except
for kc.

Similarly the stiffness matrix and the load vector after a
gas saturation are derived by using the boundary condi-
tion, c0 = csat. Non-zero elements of K are the same as
K11, K12, K22, K23, and K33 in Eq. (16). Elements of the load
vector, bsat

i are obtained by modifying the three elements of
b as given by

bsat
1 ¼ b1;

bsat
2 ¼ b2 � csatK24;

bsat
3 ¼ b3 � csatK34;

ð21Þ

where bi is the element of b in Eq. (18).
The coefficients of �cg are derived as k1 = A8/W1,

k2 = Y1/20W1, k3 = W2Y6/5, and k0 = �W2Y11/20.

3.3. Solutions of the system

The system of equations can be solved easily. However
spurious fluctuations along the grain radius could occur
if all the DOFs are used during the whole stage of a calcu-
lation [10]. We can cause the gas concentration to decrease
monotonically by reducing the number of DOFs of the sys-
tem. The number of DOFs is decreased by imposing a
homogeneous constraint on the system of equations. The
master–slave elimination method is employed to deal with
the constraint. A new set of DOFs b̂ is prepared by remov-
ing all the slave freedoms from b. A matrix transformation
is used to relate b̂ to b



Table 1
Coefficients of the numerators of the load vector

b̂i;j ¼ f � bdt þ n1 � c10 þ n2 � c20 þ n3 � c30 þ n0 � c00

f n1 n2 n3 n0

b̂1;0 7W1 10A9 A1 0 0
b̂1;1 Y8 Y8 0 0 0
b̂2;0 7W1Y1 20A1A8 2A3 4A5W 2

1W 2 �A11W 2
1W 2

b̂2;1 Y1Y8 70A2
9Y 7 2W1Y2 �8W1Y3 2W1Y9

b̂3;0 7W1W2Y6 0 A5W1W2 8A7W1W2 �A13W1W2

b̂3;1 W2Y6Y8 0 Y4 �4Y5 �Y10

b̂4;0 �7W1W2Y11 0 �A11W1W2 �4A13W1W2 2A15W1W2

b̂4;1 �W2Y8Y11 0 �Y12 4Y13 �Y14
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b ¼ Tb̂: ð22Þ

A new system of equations is obtained by modifying Eq.
(8) as follows:bKĉg ¼ b̂; ð23Þ

where bK ¼ TTKT, and ĉg ¼ TTcg.
Before the grain-face saturation, the profile of the gas

concentration within a grain is obtained by solving the
system of equations. If the gas concentration does not
decrease monotonically along the radius, c1 is set to be
equal to c2. In addition we eliminate c3 from the DOFs
by introducing a constraint oC2/oq = 0 at q2. This leads
to c3 = 3c2/4 + c0/4. The matrix form of the transforma-
tion (22) is

c1

c2

c3

c0

kc

0BBBBBB@

1CCCCCCA ¼
1 0 0

1 0 0
3
4

1
4

0

0 1 0

0 0 1

0BBBBBB@

1CCCCCCA
c2

c0

kc

0B@
1CA: ð24Þ

Furthermore, if the modified system provides a solution
such that c2 is less than c0, we eliminate c0 from the DOFs
by adding a constraint c0 = c2. The matrix form of the
transformation (22) is

c1

c2

c3

c0

kc

0BBBBBB@

1CCCCCCA ¼
1 0

1 0

1 0

1 0

0 1

0BBBBBB@

1CCCCCCA
c2

kc

� �
: ð25Þ

When the reduced system of Eq. (23) is solved, all the solu-
tions are recovered.

After a grain-face saturation, one may refer to the solu-
tion procedure reported in our previous work [10]. It is
observed that the system of equations has a matrix struc-
ture identical to that in the perfect sink case. Thus the
solution is one of the forms as derived for the cases with
1-DOF, 2-DOFs, and 3-DOFs. The number of DOFs is
selected to guarantee that the profile of the gas concen-
tration decreases along the radius. A reduced system of
equations could be obtained by applying a matrix trans-
formation of Eq. (22) to the system of equations as
explained above for the solution procedure before a grain-
face saturation. Meanwhile the apex of C2, q2v needs to be
redefined

q2v ¼
c2 3þ q2ð Þ � 4c3 1þ q2ð Þ þ c0ð1þ 3q2Þ

4 c2 � 2c3 þ c0ð Þ : ð26Þ

We employed the same procedures as those reported in [10]
for the convergence criterion as well as the automatic time
integration. Prior to a grain-face saturation, the number of
gas atoms on a grain face is chosen to determine a conver-
gence and a time increment. After a saturation, these are
checked by means of the released fraction. At every time
step, several iterations are required to satisfy the conver-
gence criterion.

In a reference problem with an irradiation-induced reso-
lution flux, the computational time of the adaptive two-
zone method is comparable to that of the case with a perfect
sink boundary condition.

4. Verification of the adaptive two-zone method under an

imperfect boundary condition

The validity of the proposed method is examined by
comparing its responses with the reference solutions for a
number of temperature and gas generation conditions.
The fission rate is assumed to be linearly proportional to
the temperature. To confirm the soundness of the present
method as a numerical algorithm, an FEM solution with
50 quadratic elements is obtained for every calculation.

The expression for the diffusion coefficient of the gas
atoms is given in Ref. [6]. A grain radius of 5 lm and a thick-
ness of the resolution layer of 0.01 lm are used in the calcu-
lations. It is assumed that the number of gas atoms on a grain
face is saturated at a value of 2 · 1019 atoms/m2. The resolu-
tion rate is linearly proportional to the fission density, and
the reference fission density is taken at a linear power of
20 kW/m.

Prior to the verifications of the present method, the
applicability of the imperfect boundary condition of Eq.
(3) is examined by comparing its fractional saturations with
those from an FEM.

Fig. 1 shows the number of gas atoms accumulated on a
grain boundary as a function of the normalized time for a



Fig. 1. Comparison of the gas saturation behaviors between Speight
model and FEM calculation with 50 elements. (a) b = 10�6,
(b) b = 3 · 10�5.

Fig. 2. Calculated fractional gas saturation and fractional gas release as a
function of the time under b = 5 · 10�6 at various temperatures. The
present method is represented by ADT2ZON.
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series of constant temperatures. Speight’s solution given by
Eq. (7) is plotted by a solid line, and the response from the
FEM by a dotted line. It is observed that, in a comparison
with the Speight’s model, the FE solutions provide an ear-
lier saturation at low temperatures. This situation results
from the imperfect sink boundary condition of Eq. (3)
for which the gas concentration at a grain surface is
assumed to be already equal to the value at a depth of a
resolution layer. The difference is especially pronounced
in Fig. 1(a) where the resolution rate is small
(b = 10�6 s�1) and the temperature is at a value of
800 �C. Under such conditions, the response of a satura-
tion at a grain boundary follows the dependency of t3/2

which is obtained by decreasing u in Eq. (7). However
the normalized time is too low to cause the incubation
times to be practically different between the two results.
At the temperature of 1600 �C, on the other hand, the
FE response lies behind the Speight’s solution which is
not applicable because a short-term (Dt/a2� 1) approxi-
mation of the Booth [14] solution is employed.

The comparisons for b = 3 · 10�5 s�1 are presented in
Fig. 1(b). The saturation curves at 800 �C become indis-
cernible when the diffusive flux is overwhelmed by the
resolution flux due to an increase of the resolution rate.
Instead the difference between the two results is calculated
to appear at a higher temperature. At 1400 �C, the gas
atoms are shown to be accumulated earlier on a grain
boundary for the imperfect sink model. It is interpreted
that the additional resolution flux from a grain boundary
due to an increase of the resolution rate is competing with
an enhanced diffusive flux from the interior of a grain at a
higher temperature. Meanwhile, the discrepancy is reduced
to a negligible magnitude at the occurrence of a saturation.

As the temperature is further raised, the response of the
gas saturation is almost the same irrespective of the value
of b. It is thought that, under a higher temperature, the
gas concentration at a grain boundary as given by Eq. (3)
is dominated mainly by the diffusion process.

Fig. 2 shows the calculated results for the gas atoms at a
grain boundary, and the fractional gas release as a function
of the normalized time for b = 5 · 10�5 s�1. It appears that
the discrepancies in the saturation behaviors are negligible
between the reference FEM and the present method. Even
at a high temperature the adaptive two-zone method pre-
dicts incubation behaviors which are similar to the FEM
results. As for the fractional release, the results from the
present method coincide well with those from the FEM.
At a temperature of 800 �C, there is a minor difference in
the fractional release between the two methods, which
can be considered to be acceptable.

Fig. 3 is the saturation behavior as a function of the irra-
diation time when the temperature is subjected to changes.
Fractional saturation curves are shown to follow a similar
tendency. At the moment of a stepwise change of the tem-
perature, however, the fractional saturation drops abruptly
for the present calculation while it varies continuously for
the FEM.

Fig. 4 shows the dependencies of the fractional gas
release on the irradiation time. Two curves are in excellent
agreement during a power increase as well as a power
decrease.

The adaptive two-zone method has been extensively ver-
ified by applying the methodology proposed by Lassmann



Fig. 3. Calculated fractional saturation as a function of the time for
varying gas generation under b = 3 · 10�6.

Fig. 4. Calculated fractional release as a function of the time for varying
gas generation under b = 3 · 10�6.

Fig. 5. Present method versus FEM with 50 elements under b = 3 · 10�6.

Fig. 6. Comparison between fractional releases with irradiation-induced
resolution from grain boundary (b = 3 · 10�6) and those under perfect
sink boundary condition.
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and Benk [18]. The fractional gas releases are calculated for
a set of 2000 individual power histories which is the same
as those used for a verification of the problem with a per-
fect sink assumption at a grain boundary [10]. The results
are compared with the reference FEM solutions in Fig. 5.
The number of cases in which a gas release is absent is
1293 for both the present method and the FEM. After a
release of fission gas, the adaptive two-zone method shows
a good overall behavior. In view of the fact that the present
results are obtained by employing 1–4 nodes in comparison
with the 101 nodes for the FEM, this comparison proves
the superior capability of the present approach for a broad
range of fission gas release.

The validity of the adaptive two-zone method is further
confirmed by plotting the fractional releases under an
imperfect sink with respect to those under a perfect sink.
A comparison is presented in Fig. 6. As expected, the frac-
tional release is retarded under the circumstances with an
irradiation-induced resolution flux. There exists no excep-
tional case for such a trend.

The distribution of the number of verification cases
against the fractional release is shown in Fig. 7. In the case
of a perfect sink condition, the number of cases follows a
normal distribution with a mean of zero, which is obtained
by using the ANS-5.4 algorithm [10,19]. Imposing an
imperfect sink on a grain boundary results in suppressing
the fission gas release especially in a low range of less than
0.4. There is a good agreement between the current
approach and the FEM.
5. Discussion

The above results show that the adaptive two-zone
method predicts fission gas behaviors comparable to the
FEM with fine meshes. However, the present method
causes an abrupt drop in the fractional saturation as shown
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Fig. 8. Normalized gas concentrations along normalized radius at the
time of 10.5 days under b = 3 · 10�6.
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in Fig. 3. Under the temperature history of Fig. 3 the dis-
tribution of a gas concentration was investigated.

Fig. 8 is the profile of a gas concentration in a grain at
the time of 10.5 days. Even though a gas accumulation is
not seen within a depth of a resolution layer for the current
approach, it is unlikely that such a sudden drop in the frac-
tional saturation is accomplished by promptly redistribut-
ing a resolution flux over a whole grain. In comparison,
it is shown that there is a reverse gradient of the gas con-
centration near a surface for the case of an FEM. A similar
accumulation near the surface is also manifested in the case
that an FE calculation is performed by implementing an
effective generation rate to a resolution layer under a per-
fect sink. These tendencies are more pronounced when a
larger amount of the power level is decreased at a power
transition. In this way there could appear an unfavorable
situation where a gas concentration on the surface exceeds
the number of gas atoms generated by the fission per unit
volume, since the gas atoms accumulated do not diffuse
away due to a lower temperature.

In addition to these observations, the assumption of Eq.
(2) is nullified for the calculation of a fission gas release at a
higher temperature as discussed by White [12]. Speight [2]
introduced the assumption in order to resolve the phenom-
enon that most of fission gas atoms are released in 2 to 3
days at 1400 �C. As shown in Fig. 1, however, the resolu-
tion flux prevails by the diffusion flux at a temperature
higher than 1400 �C.

As a result, it is necessary that further studies should be
devoted to better understanding an incubation behavior in
relation with the validity of an irradiation-induced resolu-
tion boundary condition.

6. Conclusion

An adaptive variational method has been derived to
solve the diffusion equation for a fission gas release with
an irradiation-induced resolution on a grain boundary.
Extensive verifications have shown the effectiveness and
accuracy of this approach to predict the incubation behav-
ior of a gas release as well as a fractional release. In a sim-
ilar way it could be further extended in an attempt where
one needs to develop a more descriptive model by incorpo-
rating auxiliary equations to represent a gas flow from a
grain boundary to a free volume.
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Appendix A

The coefficients Wi, Ai, and Yi for the stiffness matrix
and the load vector are given by
W 1 ¼ 25q2
2 � 4;

W 10 ¼ 25q2
20 � 4;

W 2 ¼ 1� q2;

A1 ¼ 75q2
2 � 28;

A2 ¼ 6875q6
2 þ 13125q5

2 � 2725q4
2

� 1800q3
2 � 232q2

2 þ 144q2 þ 48;

A3 ¼ 5000q7
2 þ 10625q6

2 � 1500q5
2

� 2775q4
2 � 32q3

2 þ 72q2
2 þ 64q2 þ 16;

A4 ¼ 13q2
2 þ 4q2 þ 3;

A5 ¼ 6q2
2 þ 2q2 � 1;

A6 ¼ 2q2
2 þ q2 þ 2;

A7 ¼ 2q2
2 þ 3q2 þ 2;

A8 ¼ 10q5
2;
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A9 ¼ 10q2
2;

A10 ¼ 3q2
2 � q2 þ 3;

A11 ¼ 5q2
2 þ 4q2 þ 5;

A12 ¼ 3q2
2 þ 4q2 þ 13;

A13 ¼ q2
2 � 2q2 � 6;

A14 ¼ 3q2
2 þ 9q2 þ 23;

A15 ¼ q2
2 þ 5q2 þ 22;

Y 1 ¼ 75q5
2 þ 175q4

2 þ 31q3
2 � 53q2

2 � 12q2 þ 4;

Y 2 ¼ 700q4
2 þ 1275q3

2 � 38q2
2 � 18q2 � 8;

Y 3 ¼ 700q4
2 þ 25q3

2 � 138q2
2 þ 5q2 � 4;

Y 4 ¼ 350q4
2 þ 650q3

2 þ 171q2
2 � 122q2 � 20;

Y 5 ¼ 350q4
2 þ 150q3

2 � 149q2
2 � 208q2 þ 4;

Y 6 ¼ 3q2
2 þ 4q2 þ 3;

Y 7 ¼ 15q2
2 � 4;

Y 8 ¼ 350q2;

Y 9 ¼ 525q4
2 þ 50q3

2 þ 11q2
2 � 137q2 � 8;

Y 10 ¼ 400q3
2 þ 417q2

2 � 340q2 � 36;

Y 11 ¼ q2
2 � 2q2 � 9;

Y 12 ¼ 175q4
2 þ 250q3

2 � 43q2
2 þ 218q2 � 12;

Y 13 ¼ 175q4
2 � 50q3

2 � 95q2
2 þ 284q2 � 20;

Y 14 ¼ 175q4
2 þ 600q3

2 þ 2113q2
2 � 2232q2 � 68:
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